сделать домашней  добавить в избранное  карта сайта RSS
 

Вебинары HRM.RU

Прогноз эффективности кандидатов на основе тестов
Начало 26.05.2017 12.00 (по московскому времени)

Полный список вебинаров

События

полный список

Последние обсуждения

  26.09.2019 16:41:06
Новый уровень безопасности дыхания
  30.08.2019 14:26:41
Worldskills International и 3М запускают новый совместный проект «Образование во имя будущего»
  30.08.2019 11:33:40
Молодые профессионалы за устойчивое будущее
  24.08.2019 14:36:18
Научные эксперименты, продуктовые тесты и мировые технологии для молодых профессионалов
  09.08.2019 16:18:31
Только оригинальные СИЗ обеспечивают гарантированную защиту


Опросы
  Актуальные направления работы HR вашей организации 2017
Все опросы


Методы математической обработки в психологии. глава 7 дисперсионный анализ

      Тематические разделы:
      Психология, теории HR
      Психология, теории HR : Социальная психология
      Общий менеджмент : Аналитика
      Книги

      Дата публикации: 18.07.2017






      ГЛАВА 7 ДИСПЕРСИОННЫЙ АНАЛИЗ

      7.1. Понятие дисперсионного анализа

      Дисперсионный анализ - это анализ изменчивости признака под влиянием каких-

      либо контролируемых переменных факторов. В зарубежной литературе дисперсионный

      анализ часто обозначается как ANOVA, что переводится как анализ вариативности

      (Analysis of Variance). Автором метода является Р. А. Фишер (Fisher R.A., 1918, 1938).

      Задача дисперсионного анализа состоит в том, чтобы из общей вариативности

      признака вычленить вариативность троякого рода:

      а) вариативность, обусловленную действием каждой из исследуемых независимых

      переменных;

      б) вариативность, обусловленную взаимодействием исследуемых независимых

      переменных;

      в) случайную вариативность, обусловленную всеми другими неизвестными

      переменными.

      Вариативность, обусловленная действием исследуемых переменных и их

      взаимодействием, соотносится со случайной вариативностью. Показателем этого

      соотношения является критерий F Фишера1.

      В формулу расчета критерия F входят оценки дисперсий, то есть параметров

      распределения признака, поэтому критерий F является параметрическим критерием.

      ___________________

      1 Критерии F Фишера и метод углового преобразования Фишера, дающий нам критерий ·*, - это

      совершенно различные методы, имеющие разное предназначение и разные способы вычисления.

      Чем в большей степени вариативность признака обусловлена исследуемыми

      переменными (факторами) или их взаимодействием, тем выше эмпирические значения

      критерия F.

      В дисперсионном анализе исследователь исходит из предположения, что одни

      переменные могут рассматриваться как причины, а другие - как следствия. Переменные

      первого рода считаются факторами, а переменные второго рода - результативными

      признаками. В этом отличие дисперсионного анализа от прямолинейного

      корреляционного анализа, в котором мы исходим из предположения, что изменения

      одного признака просто сопровождаются определенными изменениями другого.

      В дисперсионном анализе возможны два принципиальных пути разделения всех

      исследуемых переменных на независимые переменные (факторы) и зависимые

      переменные (результативные признаки).

      Первый путь состоит в том, что мы совершаем какие-либо воздействия на

      испытуемых или учитываем какие-либо не зависящие от нас воздействия на них, и именно

      эти воздействия считаем независимыми переменными, или факторами, а исследуемые

      признаки рассматриваем как зависимые переменные, или результативные признаки. На-

      пример, возраст испытуемых или способ предъявления им информации считаем

      факторами, а обучаемость или эффективность выполнения задания - результативными

      признаками.

      Второй путь предполагает, что мы, не совершая никаких воздействий, считаем, что

      при разных уровнях развития одних психологических признаков другие проявляются тоже

      по-разному. По тем или иным причинам мы решаем, что одни признаки могут

      рассматриваться скорее как факторы, а другие - как результат действия этих факторов.

      Например, уровень интеллекта или мотивации достижения начинаем считать факторами, а

      профессиональную компетентность или социометрический статус - результативными

      признаками.

      Второй путь весьма уязвим для критики. Допустим, мы предположили, что

      настойчивость - значимый фактор учебной успешности студентов. Мы принимаем

      настойчивость за воздействующую переменную (фактор), а учебную успешность - за

      результативный признак. Против этого могут быть выдвинуты сразу же два возражения.

      Во-первых, успех может стимулировать настойчивость; во-вторых, как, собственно,

      измерялась настойчивость? Если она измерялась с помощью метода экспертных оценок, а

      экспертами были соученики или преподаватели, которым известна учебная успешность

      испытуемых, то не исключено, что это оценка настойчивости будет зависеть от известных

      экспертам показателей успешности, а не наоборот.


      Допустим, что в другом исследовании мы исходим из предположения, что фактор

      социальной смелости (фактор Н) из 16-факторного личностного опросника Р.Б. Кеттелла -

      это та независимая переменная, которая определяет объем заключенных торговым

      представителем договоров на поставку косметических товаров. Но если объем договоров

      определялся по какому-то периоду работы, скажем трехмесячному, а личностное

      обследование проводилось в конце этого периода или даже после его истечения, то мы не

      можем со всей уверенностью отделить здесь причину от следствия. Есть очень сильное

      направление в психологии и психотерапии, которое утверждает, что личностные

      изменения начинаются с действий и поступков: "Начни действовать, и постепенно

      станешь таким, как твои поступки". Таким образом, психолог, представляющий это

      направление, возможно, стал бы утверждать, что причиной должен считаться достигнутый

      объем договорных поставок, а результатом - повышение социальной смелости.

      Только наше исследовательское чутье может подсказать нам, что должно

      рассматриваться как причина, а что - как результат. Однако не всегда эти ощущения у

      разных исследователей совпадают, поэтому нужно быть готовым к тому, что наши

      выводы могут быть оспорены другими специалистами, которые рассматривают данный

      предмет с иной точки зрения и видят в нем иные перспективы. Впрочем, спорность

      выводов - постоянный спутник психологического исследования.

      Постараемся быть оптимистичными и представим себе, что существует все же какое-

      то совпадение взглядов на психологические причины и следствия. На Рис. 7.1

      представлены два варианта рассеивания показателей учебной успешности в зависимости

      от уровня развития кратковременной памяти. Из Рис. 7.1(а) мы видим, что при низком

      уровне развития кратковременной памяти оценки по английскому языку, похоже,

      несколько ниже, чем при среднем, а при высоком уровне выше, чем при среднем. Похоже,

      что кратковременная память может рассматриваться как фактор успешности овладения

      английским языком. С другой стороны, Рис. 7.1(6) свидетельствует о том, что успешность

      в чистописании вряд ли так же определенно зависит от уровня развития кратковременной

      памяти.

      О том, верны ли наши предположения, мы сможем судить только после вычисления

      эмпирических значений критерия F.

      Рис. 7.1. Рассеивание индивидуальных средних оценок по английскому языку (а) и чистописа-

      нию (б) у учеников с низким, средним и высоким уровнями развития кратковременной памяти

      Низкий, средний и высокий уровни развития кратковременной памяти можно

      рассматривать как градации фактора кратковременной памяти.

      Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины

      исследуемого результативного признака во всех градациях одинаковы.

      Альтернативная гипотеза будет утверждать, что средние величины результативного

      признака в разных градациях исследуемого фактора различны.

      В зарубежных руководствах чаще говорят о переменных, действующих в разных

      условиях, а не о факторах и их градациях (Greene J., D'Olivera M, 1982, р. 91-93).

      Дело в том, что градация подразумевает ступень, стадию, уровень развития. Говоря о

      градациях фактора, мы явно или неявно подразумеваем, что сила его возрастает при

      переходе от градации к градации. Между тем, схема дисперсионного анализа применима и

      в тех случаях, когда градации фактора представляют собой номинативную шкалу, то есть

      отличаются лишь качественно. Например, градациями фактора могут быть: параллельные

      формы экспериментальных заданий; цвет окраски стимулов; жанр музыкальных

      произведений, сопровождающих процесс работы; традиционные или специально

      подобранные православные тексты в сеансах аутогенной тренировки; разные формы

      заболевания; разные экспериментаторы; разные психотерапевты и т. д.

      Если градации фактора различаются лишь качественно, их лучше называть

      условиями действия фактора или переменной. Например, действие аутогенной тренировки

      при условии использования текстов православных молитв или эффективность

      психокоррёкционных воздействий при разных формах хронических заболеваний у детей3.

      Экспериментальные данные, представленные по градациям фактора, называются

      дисперсионным комплексом. Данные, относящиеся к отдельным градациям - ячейками

      комплекса.

      Дисперсионный анализ позволяет нам констатировать изменение признака, но при

      этом не указывает направление этих изменений. Нам необходимо специально графически

      представлять полученные данные по градациям фактора, чтобы получить наглядное

      представление о направлении изменений.

      Подобного рода задачи, как мы помним, позволяют решать непараметрические

      методы сравнения выборок или условий измерения, а именно критерий Н. Крускала-

      Уоллиса и критерий ·2

      r Фридмана (см. параграфы 2.4 и 3.4). Однако это касается только

      тех задач, в которых исследуется действие одного фактора, или одной переменной. Задачи

      однофакторного дисперсионного анализа, действительно, могут эффективным образом

      решаться с помощью непараметрических методов. Метод дисперсионного анализа

      становится незаменимым только когда мы исследуем одновременное действие двух (или

      более) факторов, поскольку он позволяет выявить взаимодействие факторов в их влиянии

      на один и тот же результативный признак. Именно эти возможности двухфакторного

      дисперсионного анализа послужили причиной, по которой изложение этого метода

      включено в настоящее руководство.

      Несмотря на то, что нас интересует прежде всего двухфакторный дисперсионный

      анализ, который нельзя заменить другими методами, начнем рассмотрение мы с

      однофакторного дисперсионного анализа: во-первых, для того, чтобы выдержать

      определенную последовательность и логику в изложении; во-вторых, для того, чтобы на

      реальном примере продемонстрировать возможность замены этого метода непараметриче-

      скими методами.

      См. исследование Е. Б. Кулевой, 1991. См. исследование Н.В.Корольковой, 1994.

      Итак, начнем рассмотрение дисперсионного анализа с простейшего случая, когда

      исследуется действие только одной переменной (одного фактора). Исследователя

      интересует, как изменяется определенный признак в разных условиях действия этой

      переменной. Например, как изменяется время решения задачи при разных условиях моти-

      вации испытуемых (низкой, средней, высокой) или при разных способах предъявления

      задачи (устно, письменно, в виде текста с графиками и иллюстрациями), в разных

      условиях работы с задачей (в одиночестве, в одной комнате с экспериментатором, в одной

      комнате с экспериментатором и другими испытуемыми) и т.п. В первом случае

      переменной, влияние которой исследуется, является мотивация, во втором - степень

      наглядности, в третьем - фактор публичности.

      Преимущество однофакторного дисперсионного анализа по сравнению с

      непараметрическими методами Н Крускала-Уоллиса и ·2

      r Фридмана - неограниченность в

      объемах выборок. Ограничения дисперсионного анализа достаточно условны. Например,

      требование нормальности распределения признака можно обойти по крайней мере двумя

      путями: при слишком скошенном, островершинном или плосковершинном распределении

      можно, во-первых, нормализовать данные, а во-вторых... просто вообще по этому поводу

      "не волноваться", как советуют, например, А.К. Kurtz и S.T. Мауо (1979, р.417).

      7.2. Подготовка данных к дисперсионному анализу

      1) Создание комплексов

      Лучше всего для каждого испытуемого создать отдельную карточку, куда были бы

      занесены данные по всем исследованным признакам. Дело в том, что в процессе анализа у

      исследователя могут измениться гипотезы. Потребуется создавать, быть может, не один, а

      множество дисперсионных комплексов, различающихся как по факторам, так и по

      результативным признакам. Карточки помогут нам быстро создавать новые

      дисперсионные комплексы. Благодаря карточкам мы сразу увидим, равномерно ли

      распределяются данные по градациям в случае, если за фактор мы решили принять один

      из исследованных психологических признаков. С помощью карточек мы можем помочь

      себе выделить три, четыре или более градаций этого фактора, например, уровни

      мотивации, настойчивости, креативности и др.

      2) Уравновешивание комплексов

      Комплекс, в котором каждая ячейка представлена одинаковым количеством

      наблюдений, называется равномерным. Равномерность комплекса позволяет нам обойти

      требование равенства дисперсий в каждой из ячеек комплекса (Шеффе Г., 1980).

      Равномерные комплексы позволяют также избежать значительных трудностей,

      которые неизбежно возникают при обсчете неравномерных, или неортогональных,

      комплексов. В настоящем руководстве приведены алгоритмы расчета лишь для

      равномерных комплексов. С методами обсчета неравномерных комплексов можно

      ознакомиться у НА. Плохинского (1970), Г.В. Суходольского (1972), Г. Шеффе (1980).

      В случае, если в разных градациях комплекса оказалось неравное количество

      наблюдений, необходимо отсеять некоторые из них. Если в комплексе со связанными

      выборками кто-либо из испытуемых не был подвергнут одному из условий действия

      переменной (градаций фактора), то его данные исключаются. Если же комплекс включает

      независимые выборки, каждая из которых была подвергнута определенному условию

      воздействия (градации фактора), то "лишние" испытуемые в какой-либо из ячеек

      комплекса отсеиваются путем случайного выбора необходимого количества карточек.

      3) Проверка нормальности распределения результативного признака.

      Дисперсионный анализ относится к группе параметрических методов и поэтому его

      следует применять только тогда, когда известно или доказано, что распределение

      признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.). Строго

      говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в

      нормальности распределения результативного признака. Нормальность распределения

      результативного признака можно проверить путем расчета показателей асимметрии и

      эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968*

      Плохинский Н.А., 1970 и др.).

      Произведем необходимые расчеты на примере параграфа 8.3, в котором

      анализируется длительность мышечного волевого усилия.

      Действовать будем по следующему алгоритму:

      а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и

      сопоставим их с критическими значениями, указанными Н.А. Плохинским;

      б) рассчитаем критические значения показателей асимметрии и эксцесса по

      формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;

      в) если эмпирические значения показателей окажутся ниже критических, сделаем

      вывод о том, что распределение признака не отличается от нормального.

      Таблица 7.1

      Вычисление показателей асимметрии и эксцесса по показателю длительности

      попыток решения анаграмм

      № хi (хi – x ) (хi – x )2 (хi – x )3 (хi – x )4

      1 11 0,94 0,884 0.831 0,781

      2 13 2,94 8,644 25,412 74,712

      3 12 1.94 3,764 7,301 14,165

      4 9 -1,06 1,124 -1,191 1,262

      5 10 -0.06 0,004 -0,000 0,000

      6 11 0,94 0,884 0,831 0,781

      7 8 -2,06 4,244 -8.742 18,009

      8 10 -0,06 0,004 -0,000 0,000

      9 15 4,94 24,404 120,554 595,536

      10 14 3,94 15,524 61,163 240,982

      И 8 -2,06 4,244 -8,742 18,009

      12 7 -3.06 9,364 -28,653 87,677

      13 10 -0.06 0,004 -0,000 0,000

      14 10 -0,06 0.004 -0,000 0,000

      15 5 -5,06 25,604 -129,554 655,544

      16 8 -2,06 4,244 -8,742 18,009

      Суммы 161 102,944 30,468 1725,467

      Для расчетов в Табл. 7.1 необходимо сначала определить среднюю арифметическую

      по формуле:

      где хi - каждое наблюдаемое значение признака;

      n - количество наблюдений. В данном случае:

      Стандартное отклонение (сигма) вычисляется по формуле:

      где хi - каждое наблюдаемое значение признака; x среднее значение (среднее

      арифметическое); n - количество наблюдений. В данном случае:

      Показатели асимметрии и эксцесса с их ошибками репрезентативности

      определяются по следующим формулам:

      где (хi – x ) - центральные отклонения;

      · - стандартное отклонение;

      п - количество испытуемых. В данном случае:

      Показатели асимметрии и эксцесса свидетельствуют о достоверном отличии

      эмпирических распределений от нормального в том случае, если они превышают по

      абсолютной величине свою ошибку репрезентативности в 3 и более раз:

      Мы видим, что оба показателя не превышают в три раза свою ошибку

      репрезентативности, из чего мы можем заключить, что распределение данного признака

      не отличается от нормального.

      Теперь произведем проверку по формулам Е.И. Пустыльника. Рассчитаем

      критические значения для показателей А и Е:

      Итак, оба варианта проверки, по Н.А. Плохинскому и по Е.И. Пустыльнику, дают

      один и тот же результат: распределение результативного признака в данном примере не

      отличается от нормального распределения.

      Можно выбрать любой из двух предложенных вариантов проверки и

      придерживаться его. При больших объемах выборки, по-видимому, стоит производить

      расчет первичных статистик (оценок параметров) на ЭВМ.

      4) Преобразование эмпирических данных с целью упрощения расчетов

      Н.А. Плохинский указывает на возможность следующих преобразований:

      1) все наблюдаемые значения можно разделить на одно и то же число k, например

      перевести показатели из миллиметров в сантиметры и т.п.;

      2) все наблюдаемые значения можно умножить на одно и то же число k, например

      для того, чтобы избавиться от дробных значений;

      3) от всех наблюдаемых значений можно отнять одно и то же число А, например

      наименьшее значение;

      4) можно сделать двойное преобразование: из каждого значения вычесть число А, а

      полученный результат разделить на другое число k.

      При всех этих преобразованиях результативного признака показатели соотношения

      дисперсий получаются точными и не требуют никаких поправок.

      Средние величины изменяются, но их можно восстановить, умножая среднюю

      величину на число k или деля ее на k (варианты 1 и 2) или прибавляя к средней число А

      (вариант 3) и т. п. Стандартное отклонение изменяется только при введении множителя

      или делителя; полученный результат затем придется либо разделить на число к, либо

      умножить на него (Плохинский Н.А.,1964, с.34-36; Плохинский Н.А., 1970, с.71-72).

      В последующих трех параграфах будет рассмотрен метод одно-факторного анализа в

      двух вариантах:

      а) для дисперсионных комплексов, представляющих данные одной и той же выборки

      испытуемых, подвергнутой влиянию разных условий (разных градаций фактора);

      б) для дисперсионных комплексов, в которых влиянию разных условий (градаций

      фактора) были подвергнуты разные выборки испытуемых.

      Первый вариант называется однофакторным дисперсионным анализом для

      связанных выборок, второй - для несвязанных выборок.

      Все предложенные алгоритмы расчетов предназначены для равномерных

      комплексов, где в каждой ячейке представлено одинаковое | число наблюдений.

      7.3. Однофакторный дисперсионный анализ для несвязанных выборок

      Назначение метода

      Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда

      исследуются изменения результативного признака под [влиянием изменяющихся условий

      или градаций какого-либо фактора. В данном варианте метода влиянию каждой из

      градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно

      быть не менее трех4.

      Непараметрическим вариантом этого вида анализа является критерий Н Крускала-

      Уоллиса.

      Описание метода

      Работу начинаем с того, что представляем полученные данные в виде столбцов

      индивидуальных значений. Каждый из столбцов соответствует тому или иному из

      изучаемых условий (см. Табл. 7.2).

      После этого нам нужно просуммировать индивидуальные значения по столбцам и

      суммы возвести в квадрат.

      Суть метода состоит в том, чтобы сопоставить сумму этих возведенных в квадрат

      сумм с суммой квадратов всех значений, полученных во всем эксперименте.

      ___________

      4 Градаций может быть и две, но в этом случае мы не сможем установить нелинейных зависимостей и

      более разумным представляется использование более простых критериев (см. главы 2 и 3).

      Гипотезы

      H0: Различия между градациями фактора (разными условиями) являются не более

      выраженными, чем случайные различия внутри каждой группы.

      H1: Различия между градациями фактора (разными условиями) являются более

      выраженными, чем случайные различия внутри каждой группы.

      Графическое представление метода для несвязанных выборок

      На Рис. 7.2 показана кривая изменения объема воспроизведения слов при разной

      скорости их предъявления (см. Пример). Метод дисперсионного анализа позволяет

      определить, что перевешивает - тенденция, выраженная этой кривой, или вариативность

      признака внутри групп, которая на графике схематически изображена в виде диапазонов

      изменения признака от минимального значения к максимальному значению в каждой

      группе.

      Рис. 7.2. Кривая изменения объема воспроизведения при повышении скорости предъявления слов; по

      каждому условию показаны диапазоны изменения признака (по данным Greene J., D'Olivera M., 1989)

      Ограничения метода однофакторного дисперсионного анализа для несвязанных

      выборок

      1. Однофакторный дисперсионный анализ требует не менее трех градаций фактора и

      не менее двух испытуемых в каждой градации.

      2. Должно соблюдаться правило равенства дисперсий в каждой ячейке

      дисперсионного комплекса. Условие равенства дисперсий выполняется при

      использовании предлагаемой схемы расчета за счет выравнивания

      количества наблюдений в каждом из условий (градаций). Правомерность этого

      методического приема была обоснована Г.Шеффе (1980).

      3. Результативный признак должен быть нормально распределен в исследуемой

      выборке.

      Правда, обычно не указывается, идет ли речь о распределении I признака во всей

      обследованной выборке или в той ее части, которая [составляет дисперсионный комплекс.

      Характерно, что зарубежные руководства, в общем ссылаясь на необходимость

      нормального распределения данных для дисперсионного анализа, при рассмотрении

      конкретных схем и примеров к этому вопросу уже не возвращаются и никаких данных о

      распределении признака в выборке в целом или в той ее части, которая составляет

      дисперсионный комплекс, не приводят (см; McCall R., 1970; Welkowitz J., Ewen R.B., |

      Cohen J., 1982; Greene J., D'Olivera M., 1989).

      Рассмотрим схему дисперсионного однофакторного анализа для несвязанных

      выборок, предлагаемую в руководстве J.Greene, M.D'Olivera (1989) с использованием

      примера этих авторов.

      Пример

      Три различные группы из шести испытуемых получили списки из десяти слов.

      Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй

      группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой

      скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут

      зависеть от скорости предъявления слов. Результаты представлены в Табл. 7.2.

      Таблица 7.2 Количество воспроизведенных слов (по: J.Greene, M.D'Olivera,

      1989,p.99)

      № испытуемого Группа 1: низкая

      скорость

      Группа 2: средняя

      скорость

      Группа 3: высокая

      скорость

      1 8 7 4

      2 7 8 5

      3 9 5 3

      4 5 4 6

      5 6 6 2

      6 8 7 4

      Суммы 43 37 24

      Средние 7,17 6,17 4,00

      Общая сумма 104

      Поскольку сопоставляются разные группы, любые различия в показателях между

      разными условиями предъявления слов - это в то же время различия между группами

      испытуемых. Однако всякие различия между испытуемыми внутри каждой группы

      объясняются какими-то Другими, не относящимися к делу переменными, будь то

      индивидуальные различия между отдельными испытуемыми или неконтролируемые

      факторы, заставляющие их реагировать различным образом. Критерий F позволяет

      проверить гипотезы:

      H0: Различия в объеме воспроизведения слов между группами являются не более

      выраженными, чем случайные различия внутри каждой группы.

      H1: Различия в объеме воспроизведения слов между группами являются более

      выраженными, чем случайные различия внутри каждой группы. Используя

      экспериментальные значения, представленные в Табл. 7.2, установим некоторые

      величины, которые будут необходимы для расчета критерия F.

      Таблица 7.3 Расчет основных величин для однофакторного дисперсионного анализа

      Отметим разницу между ·(хi

      2), в которой все индивидуальные значения сначала

      возводятся в квадрат, а потом суммируются, и (·хi) 2где индивидуальные значения

      сначала суммируются для получения об- j щей суммы, а потом уже эта сумма возводится в

      квадрат.

      Последовательность расчетов представлена в Табл. 7.4.

      Часто встречающееся в этой и последующих таблицах обозначение SS - сокращение

      от "суммы квадратов" (sum of squares). Это сокращение чаще всего используется в

      переводных источниках (см., например: Гласе Дж., Стенли Дж., 1976).

      SSфакт означает вариативность признака, обусловленную действием исследуемого

      фактора; SSобщ - общую вариативность признака; SSCA -вариативность, обусловленную

      неучтенными факторами, "случайную" или "остаточную" вариативность.

      MS - "средний квадрат", или математическое ожидание суммы квадратов,

      усредненная величина соответствующих SS.

      df - число степеней свободы, которое при рассмотрении непараметрических

      критериев мы обозначили греческой буквой v.

      Таблица 7.4

      Последовательность операций в однофакторном дисперсионном анализе для

      несвязанных выборок

      Вывод: H0 отклоняется. Принимается H1. Различия в объеме [воспроизведения слов

      между группами являются более выраженными, [чем случайные различия внутри каждой

      группы (р<0,01). Итак, скорость предъявления слов влияет на объем их воспроизведения5.

      Вернемся к графику на Рис. 7.2. Мы видим, что, скорее всего, значимость различий

      объясняется тем, что показатель воспроизведения при самой высокой скорости

      предъявления слов (условие 3) гораздо ниже соответствующих показателей при средней и

      низкой скорости.

      7.4. Дисперсионный анализ для связанных выборок

      Назначение метода

      Метод дисперсионного анализа для связанных выборок применяется в тех случаях,

      когда исследуется влияние разных градаций фактора или разных условий на одну и ту же

      выборку испытуемых.

      Градаций фактора должно быть не менее трех.

      Непараметрический вариант этого вида анализа - критерий Фридмана ·2

      r.

      Описание метода

      В данном случае различия между испытуемыми - возможный самостоятельный

      источник различий. В схеме однофакторного анализа для несвязанных выборок различия

      между условиями в то же время отражали различия между испытуемыми. Теперь

      различия между условиями могут проявиться только вопреки различиям между

      испытуемыми.

      Фактор индивидуальных различий может оказаться более значимым, чем фактор

      изменения экспериментальных условий. Поэтому нам необходимо учитывать еще одну

      величину - сумму квадратов сумм индивидуальных значений испытуемых.

      ____________

      5 Г.В. Суходольским (1972) предложена формула расчета дисперсионного отношения, которая

      позволяет получить более строгий результат:

      где n - среднее количество наблюдений в каждой градации.

      В данном случае Fамп=6,942 (р<0,01). Эта величина действительно ниже, чем в цитируемом примере.

      Однако для первого знакомства с дисперсионным анализом исследователям, обрабатывающим свои данные

      самостоятельно, в практических целях достаточно использовать приведенный алгоритм расчетов,

      используемый и в большинстве других руководств (Плохинский Н.А., 1960; Венецкий И.Г., Кильдишев ГС,

      1968; Ивантер Э.В., Коросов А.В.; 1992, Kurtz A.K., Mayo S.T, 1979 и др.).

      Графическое представление метода

      На Рис. 7.3 представлена кривая Изменения времени решения анаграмм разной

      длины: четырехбуквенной, пятибуквенной и шестибуквенной. Однофакторный

      дисперсионный анализ для связанных выборок позволит определить, что перевешивает -

      тенденция, выраженная этой кривой, или индивидуальные различия, диапазон которых

      представлен на графике в виде вертикальных линий от минимального до максимального

      значения.

      Рис. 7.3. Изменение времени работы над разными анаграммами у пяти испытуемых; вертикальными

      линиями отображены диапазоны изменчивости признака в разных условиях от минимального значения (снизу)

      до максимального значения (сверху)

      Ограничения метода дисперсионного анализа для связанных выборок

      1. Дисперсионный анализ для связанных выборок требует не менее трех градаций

      фактора и не менее двух испытуемых, подвергшихся воздействию каждой из градаций

      фактора.

      2. Должно соблюдаться правило равенства дисперсий в каждой ячейке комплекса.

      Это условие косвенно выполняется за счет одинакового количества наблюдений в каждой

      ячейке комплекса. Предлагаемая схема расчета ориентирована только на такие

      равномерные комплексы.

      3. Результативный признак должен быть нормально распределен в исследуемой

      выборке.

      В приводимом ниже примере показатели асимметрии и эксцесса составляют:

      Таким образом, распределение показателей 5-ти, человек, составляющих

      дисперсионный комплекс, несколько отличается от нормального: . Однако в

      целом по выборке распределение нормальное:

      По-видимому, необходимо удовлетвориться тем, что в выборке в целом

      результативный признак распределен нормально. Случайно отобранные 5 человек

      распределением своих оценок демонстрируют некоторое отклонение. Однако, если бы мы

      выбирали испытуемых таким образом, чтобы распределение их оценок подчинялось

      нормальному закону, это нарушило бы правило рандомизации - случайности отбора

      объектов без учета значений результативного признака при отборе (Плохинский Н.А.,

      1970).

      Данные этого примера нам уже знакомы. Они использовались для иллюстрации

      непараметрического критерия Фридмана ·2

      r. Использование здесь этого же примера

      позволит нам сопоставить результаты, получаемые с помощью непараметрических и

      параметрических методов.

      Пример

      Группа из 5 испытуемых была обследована с помощью трех экспериментальных

      заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В.,

      1984). Каждому испытуемому индивидуально предъявлялись последовательно три

      одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли

      считать, что фактор длины анаграммы влияет на длительность попыток ее решения?

      Сформулируем гипотезы. Наборов гипотез в данном случае два. Набор А.

      H0(A): Различия в длительности попыток решения анаграмм разной длины являются

      не более выраженными, чем различия, обусловленные случайными причинами.

      H1(A)

      : Различия в длительности попыток решения анаграмм разной длины являются

      более выраженными, чем различия, обусловленные случайными причинами. Набор Б.

      Н0(Б)

      : Индивидуальные различия между испытуемыми являются не более

      выраженными, чем различия, обусловленные случайными причинами.

      Н1(Б): Индивидуальные различия между испытуемыми являются более

      выраженными, чем различия, обусловленные случайными причинами.

      Длительность попыток решения анаграмм (сек)

      Таблица 7.5

      Код имени Условие 1: Условие 2: Условие 3; Суммы

      испытуемого четырехбуквенная пятибуквенная шестибуквенная по испытуемым

      анаграмма анаграмма анаграмма

      1. Л-в 5 235 7 247

      2. П-о 7 604 20 631

      3. К-в 2 93 5 100

      4. Ю-ч 2 171 8 181

      5. Р-о 35 141 7 183

      Суммы по столбцам 51 1244 47 1342

      Установим все промежуточные величины; необходимые для расчета критерия F.

      Таблица 7.6

      Расчет промежуточных величин для критерия F в примере об анаграммах

      Обозначение Расшифровка обозначения Экспериментальное значение

      Тс

      суммы индивидуальных значений по каждому из

      условий (столбцов) 51; 1244; 47

      · Т2

      с

      сумма квадратов суммарных значений по каждому из

      условий · Т2

      с =512+12442+472

      n количество испытуемых n=5

      с

      количество значений у каждого испытуемого

      (т. е. количество условий) с=3

      N общее количество значений N=15

      Тn

      суммы индивидуальных значений по каждому

      испытуемому 247; 631; 100; 181; 183

      · Т2

      n

      сумма квадратов сумм индивидуальных значений по

      испытуемым 2472+6312+1002+1812+1832

      (· x i)2 квадрат общей суммы индивидуальных значений (· x i)2=13422

      1/N * (· x i)2

      константа, которую нужно вычесть из каждой суммы

      квадратов 1/N * (· x i)2 =1/N *13422

      xi каждое индивидуальное значение

      · x2

      i сумма квадратов индивидуальных значений

      Мы по-прежнему помним разницу между квадратом суммы и суммой квадратов

      Последовательность расчетов приведена в Табл. 7.7








      Share |

       

      Версия для печати

      Читайте также

      Управление талантами в российских IT-компаниях
      Управление талантами в российских IT-компаниях

      Практика проведения исследований среди организаций в России еще не распространена широко. Однако попытки крупномасштабных исследований имеются. Компания «Peak Point» стала одной из первых в проведении исследований в различных сферах управления человеческим капиталом.


      Вам снова нужен отпуск. Как это объяснить начальству?
      Вам снова нужен отпуск. Как это объяснить начальству?

      Вы просите об отдыхе спустя два месяца после отпуска. Шеф недоволен и требует объяснений. Что лучше ответить начальнику на этот вопрос?

      В поиске лидеров будущего
      Мотивация персонала: ошибки в подходе
      Рамочная конструкция конкурирующих ценностей
      Имя 
      Пароль  забыли?
      Присоединяйтесь!

      Новые материалы

         Названы самые высокооплачиваемые вакансии в Башкирии
         Не все профессии равны. Вчерашние школьники идут в телевизионщики и PR
         Новочебоксарские безработные граждане обучаются востребованным профессиям
         Где в Уфе заработать 100 тысяч рублей в месяц
         Сколько в среднем получают владимирские врачи?


      Последние комментарии

        
         мне приятно Вас читать 99 % читаемое мной - мусор... А на ваших постах глаза отдыхают 
         Действительно, Эдуард, что это я! Всё ещё hr, всё ещё пишу - с удовольствием вернусь)))
         Марина, вы вернетесь к нам или уже все?)
         вы можете оставлять активную ссылку на источник 
      Все статьи


      Интервью




      Публикую статью Алексея Королькова с видеокомментарием
      все интервью


      О проекте      Реклама       Подписка       Контакты       Rambler's Top100 Яндекс цитирования ©2000-2011, HRM