сделать домашней  добавить в избранное  карта сайта RSS
 

Вебинары HRM.RU

Прогноз эффективности кандидатов на основе тестов
Начало 26.05.2017 12.00 (по московскому времени)

Полный список вебинаров

События

полный список

Последние обсуждения

  09.08.2019 16:18:31
Только оригинальные СИЗ обеспечивают гарантированную защиту
  07.08.2019 12:14:48
Компания 3М опубликовала финансовые результаты II квартала 2019 года
  08.07.2019 10:12:52
Известный сайт для общения специалистов по управлению персоналом
  04.07.2019 17:29:07
3М цифровизирует программу лояльности и переводит взаимодействие с клиентами на блокчейн
  13.06.2019 14:28:30
Открытие стоматологической площадки 3M Espertise Center


Опросы
  Актуальные направления работы HR вашей организации 2017
Все опросы



Словарь терминов HR

* | А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я
* | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Винер Норберт Винер Норберт (1894-1964), Wiener, Norbert. Норберт Винер был отцом кибернетики, новой науки, возникшей на стыке нескольких научных дисциплин вскоре после окончания Второй мировой войны. Биографиия и краткое описание идей из книги "Классики менеджмента" изд-ва Питер

Тематические разделы:
Психология, теории HR : Персоналии
HR-Менеджмент
Психология, теории HR

Информация для публикации любезно предоставлена изд-вом Питер

Винер Норберт (1894-1964), Wiener, Norbert


1. Введение
2. Основной вклад
3. Практическое применение основных идей


Краткие биографические сведения

родился 26 декабря 1894 г. в городе Колумбия, штат Миссури, США;
в возрасте 10 лет написал свою первую работу, озаглавленную “Теория невежества”;
изучал математику и философию в Гарвардском университете;
в возрасте 19 лет получил докторскую степень по философии в Гарвардском университете;
в 1926 г. женился на Маргарет Энгельман;
стал первопроходцем в новой науке кибернетике;
большую часть жизни работал в Массачусетстком технологическом институте (США) в должности профессора математики;
написал 11 книг и свыше 200 статей для различных научных журналов;
получил пять научных наград (в том числе и Национальную премию в области науки, врученную ему президентом США) и три почетных докторских степени;
скончался 18 марта 1964 г. в Стокгольме в результате сердечного приступа.

Основные работы

Cybernetics: or Control and Communication in the Animal and the Machine (1948)
The Human Use of Human Beings: Cybernetics and Society (1950)
Ex-prodigy (1952)
I am a Mathematician (1956)
God and Golem, Inc. (1964)
Invention: The Care and Feeding of Ideas (1993)

Резюме

Норберт Винер был отцом кибернетики, новой науки, возникшей на стыке нескольких научных дисциплин вскоре после окончания Второй мировой войны. Кибернетика установила связи между наукой периода военных действий и послевоенной социальной наукой посредством выработки некаузального и экологического вИдения как физических, так и биологических систем. В своих посвященных кибернетике работах Н. Винер продемонстрировал наличие инвариант в механизмах управления и передачи информации живых существ и машин. Кибернетические принципы обеспечили, с одной стороны, основы для создания многих технических устройств, например, радаров, информационных сетей, компьютеров и искусственных конечностей, а с другой — помогли разработать фундаментальные подходы к изучению таких феноменов живого мира как обучение, память и интеллект. Кибернетические идеи нашли применение и получили дальнейшее развитие в управленческих науках, а также в более широком социологическом контексте.

1. Введение

Норберт Винеробладал необыкновенными математическими способностями и уже в возрасте 19 лет сумел получить степень доктора философии в Гарвардском университете (Harvard University). Основная часть его научной карьеры была связана с работой в Массачусетстком технологическом институте (МТИ), где он, занимая должность профессора математики, написал 11 книг и свыше 200 статей для различных научных журналов. С первых ранних, посвященных созданию математической теории броуновского движения и математических моделей для квантовой механики работ (в 1920-е гг. — наиболее важные проблемы теоретической физики), Н. Винер проявил себя как замечательный математик, сумев дополнить естественнонаучное содержание работ оригинальной личной философией. Для Н. Винера математические теории представляли собой специальные условия, в которых конкретизировались общие философские идеи. Его философский подход подразумевал единый взгляд на мир и в том числе на существующих в нем людей, мир, в котором все является взаимосвязанным, но в котором наиболее общие принципы обладают элементами неопределенности (Heims, 1980: 140, 156). Такое холистическое (или экологическое) видение природы, предложенное ученым, работавшим в первой половине XX в., намного опередило свое время.

2. Основной вклад

В период второй мировой войны Управление научно-исследовательских работ США отдавало приоритет работе над долгосрочным проектом создания атомной бомбы, а также решению более срочной задачи поиска способов уничтожения немецких бомбардировщиков. В то время как основные работы по созданию атомной бомбы осуществлялись в Лос-Аламосе, исследования способов обнаружения, сопровождения и уничтожения самолетов велись, главным образом, в MIT, где Н. Винер отвечал за разработку необходимого для решения этой задачи математического аппарата. В сотрудничестве с молодым инженером Джулианом Бигелоу Н. Винер разработал достаточно общую математическую теорию предсказания наилучших вариантов будущего на основе неполной информации о прошлом. Эта теория способствовала революционному перевороту в практике создания средств связи и заложила основы для современной статистической теории связи и информации (Heims, 1980: 184). В то время (1940-е гг.) эта теория немедленно привела к значительному улучшению методов слежения за самолетами с помощью радаров и стала успешно применяться при создании устройств фильтрации шумов для радиоприемников, телефонов и многих других приборов общего назначения (Wiener, 1993). Эта работа проводилась Н. Винером примерно в то же время, когда независимо от него Клод Шеннон создавал свою “математическую теорию передачи информации” (Shannon and Weaver, 1949).
Один из наиболее интересных аспектов проблемы противовоздушной обороны был связан с созданием контура обратной связи: информация с экрана радара использовалась для расчета поправок, необходимых при управлении оружием поражения для повышения точности наведения, а затем эффективность этих корректировок отслеживалась и отображалась с помощью радара, далее эта новая информация вновь использовалась для уточнения наведения оружия на цель и т.д. Если расчеты в данном процессе осуществлялись автоматически, то такая система работала как самоуправляемая; если же расчеты не были автоматизированы, то вся система в целом, включая действующих в ней людей, также была самоуправляемой. Важнейшая догадка Н. Винера заключалась именно в том, что сходные механизмы обратной связи используются во всех видах целенаправленной деятельности, например, в случае, когда мы берем со стола обыкновенный карандаш. Здесь информация, воспринимаемая главным образом посредством наблюдения, непрерывно используется для управления нашими мускулами руки вплоть до момента успешного решения поставленной задачи. Н.Винер обсуждал свои идеи в этой области с мексиканским физиологом Артуро Розенблюэтом, предположившим, что некоторые обычные расстройства нервной системы, известные под названием атаксии (нарушения координации движений), могут быть объяснены с точки зрения неточности работы системы обратной связи. Если вы предложите сигарету человеку, страдающему атаксией, то он протянет руку дальше, чем требуется для того, чтобы взять ее со стола. Далее он сделает бесполезные движения в противоположном направлении, а затем вновь в первоначальном, так что его действия будут напоминать не приводящей к поставленной цели колебательный процесс.
Мысль о том, что с помощью математических формул могут быть найдены некие параллели между механическими устройствами и живыми организмами, получила поддержку у многих представителей самых разных наук. Восьмого марта 1946 г. в одном из нью-йоркских отелей для обсуждения подобных идей собрались двадцать один видный ученый. Эта встреча оказалась первой из серии научных конференций, организованных при спонсорской поддержке Macy Foundation — в ходе которых были сформулированы основные принципы новой науки кибернетики. Группа ученых, регулярно участвовавшая в этих встречах в 1946-1953 гг. получила название “кибернетической группы” (Heims, 1991). В нее входили такие ученые как выдающийся математик Джон фон Нейман, психоневролог Уоррен Маккуллах, специалист в области общественных наук Грегори Бейтсон, а также Артуро Розенблюэт и сам Норберт Винер.
В своей классической книге Cybernetics: or Control and Communication in the Animal and the Machine (“Кибернетика или контроль и коммуникации у животных и машин”) (1948) Н. Винер обозначил и описал основы кибернетики — одной из самых молодых научных дисциплин XX в. Использованное Н. Винером название науки восходит к древним грекам и означает в буквальном смысле “искусство управления”. При его выборе Н. Винер хотел подчеркнуть признание того факта, что первой посвященной действию механизма обратной связи значительной работой была статья о регуляторах Кларка Максвелла (1868) и что термин “регулятор” (governor) происходит от искаженного латинского слова gubernatur. Платон использовал этот термин для обозначения науки об управлении кораблями в то время как в XIX в. французский ученый Андре Ампер заимствовал его для определения науки об управлении.
Демонстрируя факт наличия основополагающего сходства между используемыми в различных науках механизмами управления, кибернетика смогла устранить давнее философское противоречие между витализмом и механизмом, согласно которому биологические и механические системы имели принципиально различную природу. Фактически кибернетика, в соответствии с философской позицией Н. Винера, допускала гораздо более широкую классификацию систем, и таким образом проявляла свой междисциплинарный характер (Wiener, 1993: 84). Полезным критерием для проведения этой классификации является понятие комплексности, в соответствии с которым основной интерес кибернетики заключается в изучении комплексных (то есть настолько сложных, что они не могут быть описаны в подробном и детальном виде) и стохастических (в противоположность детерминированным) систем (Beer, 1959: 18). Типичными примерами таких систем являются экономика, человеческий мозг и коммерческая компания.
Для изучения механизма управления и передачи информации в подобных системах Н. Винер и его коллеги разработали понятия обратной связи, гомеостазиса и “черного ящика”. Хотя механизм обратной связи был рассмотрен нами ранее, полезно проанализировать его основные характеристики более подробно. Каждый контур обратной связи подразумевает использование входящей информации (например, измерений температуры) и выхода (например, данных о работе нагревателя); кроме того — и это имеет важнейшее значение — информация на входе испытывает на себе воздействие выходе, например, мощность нагревателя будет определять показания, снимаемые с термометра, которые, в свою очередь, будут влиять на сигнал о включении или об отключении нагревателя. Таким образом, происходит непрерывный контроль за расхождением между желаемой и реальной ситуацией. Если управляющий механизм действует в направлении сокращения этого расхождения, то такая обратная связь носит название отрицательной (как в случае термостата); если же обратная связь способствует увеличению расхождения, то она называется положительной (как в случае механического тормоза, который фиксирует начальные движения руки водителя и затем усиливает их до тех пор, пока не сможет остановить движущийся автомобиль).

В своей книге Cybernetics (“Кибернетика”) (1948) Н. Винер показал, что механизмы обратной связи присутствуют во многих имеющих принципиально различную природу системах — от механических до экономических и от социологических до биологических. Особый, имеющий важнейшее значение для поддержания жизни тип обратной связи присутствует в так называемом явлении гомеостаза. Классическим биологическим примером является гомеостаз температуры крови, позволяющий сохранять температуру тела практически неизменной, несмотря на перемещение организма из холодного помещения в теплое. Таким образом гомеостатом называется регулирующий прибор, для поддержания некоторых переменных в заданных пределах. Так, типичным примером гомеостата является созданный Дж. Уаттом регулятор давления пара в паровозе, предназначенный для управления его скоростью при различных значения нагрузки. Здесь крайне важно понять, что выход регулируемой переменной за желаемые пределы (когда скорость паровоза оказывается слишком быстрой или слишком медленной) сам по себе выполняет роль обратной связи (когда происходит соответствующее закрытие или открытие клапанов в регуляторе Уатта). Другими словами, до тех пор, пока функционирует сам механизм, его обратная связь также будет работать исправно. Этот вывод имеет огромное значение, поскольку он подразумевает, что обратная связь регулятора всегда будет гарантированно компенсировать не только данный тип возмущений, но и возмущения любых типов (Beer, 1959: 29). Это особое свойство систем управления обычно называется ультрастабильностью (Ashby, 1956).
Теперь нам должно быть ясно, что понятие “управления” в кибернетике не сводится к наивному представлении о процессе принуждения, а подразумевает осуществление саморегулирования.
Другим важным, получившим распространение во многих других науках понятием кибернетики является “черный ящик”. Кибернетика, как уже отмечалось выше, занимается, главным образом, исследованием механизмов управления и передачи информации в сложных стохастических системах. Для изучения процесса управления кибернетики используют понятия обратной связи и гомеостаза; для анализа вероятностных характеристик систем они применяют статистическую теорию информации; наконец, исследование комплексности систем они осуществляют с помощью понятия черного ящика. Представляя систему в качестве черного ящика, кибернетики по умолчанию соглашаются с когнитивными ограничениями своего понимания огромного числа возможных состояний, доступных сложной системе в любой момент времени. Однако при этом они признают возможности манипулирования некоторыми входными сигналами и наблюдения некоторых результатов работы системы на выходе. Если выходные сигналы непрерывно сравниваются с конкретными желаемыми величинами, то некоторые реакции системы могут быть определены с точки зрения их влияния на входные сигналы черного ящика с тем, чтобы сохранить систему “в управляемом состоянии”.
При моделировании системы в виде черного ящика идентифицируются четыре набора переменных: набор возможных состояний системы (S); набор возмущений, способных повлиять на текущее ее состояние (Р); набор реакций на эти возмущения (R); набор целей, определяющих приемлемые состояния в соответствии с установленными критериями (Т). Считается, что система находится в “управляемом состоянии” если в любой момент времени ее состояние соответствует состоянию из набора Т. С помощью этой модели устанавливается чрезвычайно важный кибернетический принцип: если система находится в управляемом состоянии, то необходимо, чтобы для любого возмущения, стремящегося вывести систему из допустимых состояний, существовала такая ее реакция, которая после своего осуществления приводила бы систему в одно из состояний из совокупности Т. Данный принцип был разработан английским кибернетиком Россом Эшби и получил название “закона необходимого многообразия”, обычно формулируемого следующим образом: “только многообразие способно поглотить многообразие” (Ashby, 1956).
Н. Винер получил опыт работы с вычислительными устройствами в самом начале своей научной карьеры (Wiener, 1993). Еще в 1920-х гг., задолго до создания первых компьютеров, он разработал метод для вычисления определенной группы интегралов с помощью прохождения луча через специальные фильтры и последующего замера интенсивности принимаемого светового потока. Это новое устройство являлось, по сути, аналоговым компьютером, и получило название “интеграфа Винера”. Примерно двадцать лет спустя, в 1940 г., Н. Винер отправил американскому правительству докладную записку, в которой он описывал пять характеристик, которыми должен был обладать будущий компьютер: он должен был быть цифровым, а не аналоговым; использовать двоичную систему счисления; создаваться на базе электронных элементов; его логическая схема должна была соответствовать принципам, на которых была создана машина Тьюринга; в компьютере для хранения информации следовало использовать магнитную ленту. Хотя этот меморандум в течение многих лет игнорировался правительственными чиновниками, некоторые его идеи, выдвинутые независимо от Н. Винера другими учеными, легли в основу создания современных быстродействующих компьютеров.

3. Практическое применение основных идей

Многие ассоциируемые в настоящее время с созданием кибернетики ранние исследования были посвящены проектированию и созданию различных устройств. Электронные модели черепах, созданные британским невропатологом Греем Уолтером, наглядно демонстрировали, что объединение нескольких простых механизмов с использованием правильно подобранной обратной связи позволяет реализовать почти такие же сложные модели поведения, как и у живых систем. Примерно в то же время английский кибернетик Гордон Паск разработал обучающую машину, положив начало процессу, приведшему в итоге к написанию и публикации его знаменитой Conversational Theory (“Конверсационной (разговорной) теории”) (1975). Машина Г. Паска отображала информацию, которая должна была быть усвоена, получала от обучаемого человека ответ на заданный вопрос и использовала его в качестве сигнала обратной связи для совершенствования процесса обучения. Таким образом, эта непрерывно приспосабливающаяся к возможностям ученика машина могла быть использована для обучения. Сам Н. Винер в 1950-х и начале 1960-х гг. уделял много внимания созданию устройств для замены ампутированных конечностей, стремясь также воспроизвести их тактильную чувствительность. Его совместная работа с группой хирургов-ортопедов, неврологов и инженеров (хотя и оказавшаяся в те годы безуспешной) наметила пути для последующего создания протеза, получившего название Бостонской руки.
Эта работа с различными устройствами имела двойную цель: (1) продемонстрировать возможность практического применения кибернетических идей и (2) содействовать изучению комплексных подобных нервной системе человека систем, а также лучшему пониманию таких свойств живых существ как обучаемость, память и интеллект. В качестве примера исследования интеллекта Н. Винер во втором издании своей книги о кибернетике (Wiener, [1948] 1961) подробно объяснял, как можно создать машину, способную играть в шахматы на приемлемо высоком уровне. В настоящее же время почти любой ПК в состоянии победить практически любого шахматиста-любителя. К сожалению, вследствие, в том числе и первоначальных попыток практического применения кибернетических идей, вся новая научная дисциплина в целом стала ассоциироваться с реальным оборудованием, в особенности с компьютерами, несмотря на то, что ее принципы по-прежнему использовались в других дисциплинах.
В области теории менеджмента наиболее значительная развитие идей Н. Винера было осуществлено Стаффордом Биром, который моделируя компанию в виде совокупности взаимосвязанных гомеостатов и использую закон Эшби о требуемом многообразии, создал модель жизнеспособной системы — МЖС (Beer, 1979, 1981, 1985). МЖС, ставшая важным достижением направления кибернетики, получившего название управленческой кибернетики, оказалась полезным инструментом диагностирования и даже проектирования комплексных систем — от малых фирм до крупных международных компаний и от местных органов самоуправления до экономики государства в целом (Espejo and Harnden, 1989).
В конце 1970-х гг. некоторые специалисты в области социальных наук попытались развить и обогатить кибернетику за счет ее объединения с социологией и создания так называемой “социокибернетики”. Однако на этом пути они столкнулись с некоторыми проблемами, решение которых оказалось для них, по-видимому, чрезвычайно сложным (Geyer and Zouwen, 1986). Лишь последующие работы в области исследования биологических аспектов процесса познания (см. например, Maturana and Varela, 1987; Foerster, 1984) заложили основы для успешного развития социальной кибернетики. Эта наука, известная под названием “кибернетики второго порядка” (Foerster, 1979) представляет собой пример необъективистского подхода к научному исследованию, подчеркивающего роль наблюдателя в социальных системах.
Таким образом, кибернетика второго порядка, подчеркивая значение независимости индивидов и изучая непрерывные процессы, с помощью которых они создают общую реальность, указывает на возможность новой парадигмы в социальных исследованиях, которая могла бы обеспечить — обращаясь к названию одной из книг Н. Винера — более “гуманное использование человеческих существ”.

Имя 
Пароль  забыли?
Присоединяйтесь!

Новые материалы

   Названы самые высокооплачиваемые вакансии в Башкирии
   Не все профессии равны. Вчерашние школьники идут в телевизионщики и PR
   Новочебоксарские безработные граждане обучаются востребованным профессиям
   Где в Уфе заработать 100 тысяч рублей в месяц
   Сколько в среднем получают владимирские врачи?


Последние комментарии

  
   мне приятно Вас читать 99 % читаемое мной - мусор... А на ваших постах глаза отдыхают 
   Действительно, Эдуард, что это я! Всё ещё hr, всё ещё пишу - с удовольствием вернусь)))
   Марина, вы вернетесь к нам или уже все?)
   вы можете оставлять активную ссылку на источник 
Все статьи


Интервью




Публикую статью Алексея Королькова с видеокомментарием
все интервью


О проекте      Реклама       Подписка       Контакты       Rambler's Top100 Яндекс цитирования ©2000-2011, HRM